Software Engineering Institute

AADL Fault Modeling and Analysis
Within an ARP4761 Safety Assessment

Julien Delange
Peter Feiler
David P. Gluch
John Hudak

October 2014

TECHNICAL REPORT
CMU/SEI-2014-TR-020

Software Solutions Division

http://iwww.sei.cmu.edu

Carnegie Mellon University

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent
AFLCMC/PZM

20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-1S” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-
low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely dis-
tributed in written or electronic form without requesting formal permission. Permission is required for
any other external and/or commercial use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon Universi-
ty.

DM-0001725

Table of Contents

Acknowledgments
Abstract

1 Introduction

1.1 Functional Hazard Assessment
1.2 Preliminary System Safety Assessment
1.3 System Safety Assessment

1.4 Reader’s Guide

2 AADL Error Model Constructs That Support ARP4761

2.1 Error Propagation

21.1
21.2
213
2.1.4

Definition
Procedure
Constraints
Example

2.2 Error Source

221
222
223
224

Definition
Procedure
Constraints
Example

2.3 Error Path

23.1
23.2
233
234

Definition
Procedure
Constraints
Examples

2.4 Error Sink

24.1
242
243

Definition
Procedure
Example

2.5 Error Events

251
25.2
253
254

Definition
Procedure
Constraints
Example

2.6 Error States

26.1
2.6.2
2.6.3
2.6.4

Definition
Procedure
Constraints
Example

2.7 Error Transitions

27.1
2.7.2
2.7.3
2.7.4

2.8 Error Propagation Condition

28.1
2.8.2
2.8.3
2.8.4

Definition
Procedure
Constraints
Example

Definition
Procedure
Constraints
Example

3

X

W wWNN P

© © 000 OWwOowOoUu o b b

PRrRPRPRPRPEPRPRRPRRPEPEPEPEPRPEPRPRPREPREPRRPRPRPRERRELRLER
NN uhBEMREMDOWWWWWNNNNOOO

CMU/SEI-2014-TR-020 | i

2.9

2.10

Composite Error Behavior Model
2.9.1 Definition

2.9.2 Procedure

2.9.3 Constraints

2.9.4 Example

Hazards Property

2.10.1 Definition

2.10.2 Procedure

2.10.3 Constraints

2.10.4 Example
OccurrenceDistribution Property
2.11.1 Definition

2.11.2 Procedure

2.11.3 Constraints

2.11.4 Example

OSATE Tool Set

31

3.2

3.3
34

35

3.6
3.7

Functional Hazard Assessment Support

3.1.1 Processed Modeling Patterns

3.1.2 Example Model

3.1.3 Fault and Hazard Analysis Report Example
Fault Tree Analysis Support

3.2.1 Introduction

3.2.2 Using the Fault Tree Analysis Generator
3.2.3 Mapping to OpenFTA Format File

3.2.4 Mapping to Generic XML Format

3.2.5 AADL and FTA Mapping Rules

3.2.6 Issues and Known Limitations

Failure Modes and Effects Analysis Support
Dependence and Reliability Block Diagram Support
3.4.1 Introduction

3.4.2 Processed Modeling Patterns

3.4.3 Algorithm

3.4.4 Example

3.4.5 Known Issues and Limitations

Markov Analysis Support

3.5.1 Continuous-Time Markov Chains

3.5.2 Discrete-Time Markov Chains

3.5.3 AADL Export to PRISM Function

3.5.4 AADL and PRISM Mapping Rules

3.5.5 Issues and Known Limitations
Error-Model Consistency

Unhandled Faults

Wheel Brake System Example

4.1

4.2

Overview

4.1.1 Wheel Brake System Architecture
4.1.2 Safety Evaluation Materials
Simple Model

4.2.1 Overview

4.2.2 Adding Faults and Errors Information in the AADL Model

4.2.3 Functional Hazard Assessment
4.2.4 Fault Tree Analysis
4.2.5 Failure Modes and Effects Analysis

17
17
17
18
18
19
19
21
21
21
22
22
23
23
23

24
24
25
25
26
27
27
27
27
28
28
29
30
31
31
32
33
34
37
37
37
39
41
42
43
43
45

a7
a7
48
48
49
49
51
56
57
58

CMU/SEI-2014-TR-020 | ii

4.3 Advanced Model
4.3.1 Overview
4.3.2 Functional Model
4.3.3 Realization Model
4.3.4 Binding Realization and Functional Models

5 Summary
Acronyms

References

CMU/SEI-2014-TR-020

59
59
60
61
62

67

68

69

CMU/SEI-2014-TR-020 | iv

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:

Overview of the Safety Assessment Process [SAE 1996]
Basic Dual-Redundant Control System

Error Propagation from Controller 1

Graphical Representation of the Control System with Error Flows
Error Flow of the HardwareFailure to SoftwareFailure Using Bindings
OSATE Functions for Consistency Analysis

OSATE's Functional Hazard Assessment Report

Error State for the Fault Tree Analysis

OSATE'’s Reports Subdirectory

Fault Tree Analysis as Shown in OpenFTA

Fault Analyses Menu in OSATE

File Hierarchy Containing Error-Related Reports
Redundant Controller Architecture RBD

Combined RBD

RBD Results

Graphical Instance Model for the RBD Analysis

Result of the Plug-in on the RBD Analysis

Dual-Sensor Model with No Repair

Dual-Sensor Model with Repair

Graphical Output of the PRISM Simulation

DTMC State Diagram

Selection of the Markov-Chain Type

Files Hierarchy and the Produced PRISM File

Report of Unhandled Error Types in Eclipse Problems View
Files Hierarchy of the Model

Overview of the Complete Model of the WBS

Variation of the BSCU Implementation

Error Paths from the Battery to Select_Alternate

Extract of the Functional Hazard Assessment

Extract of the Fault Tree Analysis

Extract of the FMEA

Functional Model

Decomposition of the Decelerate Function

11
11
24
26
27
27
28
30
30
31
32
34
35
35
37
38
39
40
42
42
46
49
50
51
54
57
58
58
60
61

CMU/SEI-2014-TR-020 | v

Figure 34:
Figure 35:
Figure 36:
Figure 37:

Realization Model 62

Example of Binding a Functional and a Realization Model 63
Fault Impact Analysis of the Functional Model 66
Fault Impact Analysis for the Integrated Model (Implementation + Functional) 66

CMU/SEI-2014-TR-020 | vi

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:

ARPA4761 Process Elements and Supporting AADL Error Model Constructs 4
RBD Failure Rate Equations 32
Composite System Error Behavior for a Redundant Control System Architecture 33
Mapping Rules for the AADL to PRISM Transformation 42

CMU/SEI-2014-TR-020 | vii

CMU/SEI-2014-TR-020 | viii

Acknowledgments

The authors would like to thank all the people who contributed to this report by reviewing it, pro-
posing additions, making comments, or providing general feedback. The work presented in this
report was initially performed for the System Architecture Virtual Integration (SAVI) program, a
project of the Aerospace Vehicle System Institute (AVSI). All project contributors were very
helpful to this work and provided good input for enhancing the connection between model-based
technologies with actual safety evaluation standards.

CMU/SEI-2014-TR-020 | ix

CMU/SEI-2014-TR-020 | x

Abstract

SAE Standard Aerospace Recommended Practice (ARP) 4761, Guidelines and Methods for Con-
ducting the Safety Assessment Process on Civil Airborne Systems and Equipment, provides gen-
eral guidance on evaluating the safety aspects of a design and identifies processes, methods, and
tools to support the evaluation. The Architecture Analysis and Design Language (AADL) Error
Model Annex defines features to enable specification of risk mitigation methods in an architecture
and assessments of system properties such as safety and reliability. This report describes how the
AADL Error Model Annex supports the safety assessment processes and techniques presented in
SAE Standard ARP4761. It provides a mapping between constructs of the AADL Error Model
Annex and the assessment techniques identified in ARP4761 and presents examples of using the
Error Model Annex with those techniques. The processes and techniques of the ARP4761 stand-
ard that this report addresses are the Functional Hazard Assessment, Preliminary System Safety
Assessment, System Safety Assessment, Fault Tree Analysis, Failure Modes and Effects Analysis,
Markov Analysis, and Dependence Diagrams, also referred to as Reliability Block Diagrams.

CMU/SEI-2014-TR-020 | xi

CMU/SEI-2014-TR-020 | xii

1 Introduction

SAE Standard Aerospace Recommended Practice (ARP) 4761, Guidelines and Methods for Con-
ducting the Safety Assessment Process on Civil Airborne Systems and Equipment, provides gen-
eral guidance on evaluating the safety aspects of a design and identifies processes, methods, and
tools to support the evaluation [SAE 1996]. The techniques identified in the ARP4761 assessment
process are Functional Hazard Assessment (FHA), Preliminary System Safety Assessment
(PSSA), System Safety Assessment (SSA), Common Cause Analysis (CCA), Fault Tree Analysis
(FTA), Failure Modes and Effects Analysis (FMEA), Failure Modes and Effects Summary, Mar-
kov Analysis (MA), and Dependence Diagrams (DDs), also referred to as Reliability Block Dia-
grams (RBDs).

The Architecture Analysis and Design Language (AADL) Error Model Annex defines features to

enable specification of risk mitigation methods in an architecture and assessments of system prop-
erties such as safety and reliability.* Figure 1 is adapted from the ARP4761 standard and provides
an overview of safety assessment, highlighting the FHA, PSSA, and SSA processes. In this report,
we address the FHA, PSSA, and SSA processes and describe how the AADL Error Model Annex
supports these and the FTA, MA, and DD/RBD methods, which are integral to an effective safety
assessment.

Design Validation and Verification
Detailed Design
Preliminary Design

Concept Development J

|

/Aircraft FHA System FHA \

SSAs

Y System FMEAs
System FTAs
System FTAs

Aircraft FTAs El
PSSAs

CCAs

_)

Figure 1: Overview of the Safety Assessment Process [SAE 1996]

Delange, Julien; Feiler, Peter; Gluch, David; & Hudak, John. Architecture Fault Modeling with AADL and the
Error Model Annex v2. Software Engineering Institute, Carnegie Mellon University, forthcoming. Hereafter cited
as (Delange, forthcoming).

CMU/SEI-2014-TR-020 | 1

1.1 Functional Hazard Assessment

The FHA is a systematic examination of functions to identify and classify failure conditions of
those functions according to their severity. The FHA output is the input to a PSSA and a starting
point for the creation of safety requirements with an FTA, DD/RBD, or MA supporting the more
detailed requirements, especially quantitative requirements. An FHA is usually conducted at the
aircraft and system levels.

The AADL Error Model Annex supports the FHA through property assignments within an AADL
architecture model. Users can generate an FHA report using the Error Model Annex and the Open
Source AADL Tool Environment (OSATE), by assigning Hazard, Likelihood, and Severity prop-
erty values to points of failure. Then, OSATE can generate the FHA report.

1.2 Preliminary System Safety Assessment

The PSSA is a systematic, top-down investigation of proposed system architectures. It determines
how failures can lead to the functional hazards identified in the FHA and how the requirements of
the FHA can be achieved. The PSSA process is iterative, correlates with the design process, and
continues throughout the design cycle. A PSSA can be qualitative and quantitative and is con-
ducted at multiple levels from aircraft to more detailed system levels, where higher levels provide
a basis for conducting lower level PSSAs. For example, the PSSA data from the aircraft level in-
form PSSA data from the lower components.

The ARP4761 recommends using FTAs, FHAs, RBDs, and MAs to make a first description of
safety concerns during the PSSA. It indicates that where FTAs are referenced, DDs/RBDs or MAs
may be employed. Then, this preliminary description is refined and enhanced during the SSA. The
AADL Error Model Annex provides support for conducting these analyses as well as supporting
analyses of various levels of fault propagation through an architecture.

To investigate the occurrence and propagation of errors, users identify error-propagation points
and error-propagation paths within the AADL architecture model. Then, with the OSATE tool,
users can create a graphical representation of the occurrence of an error and its impact on other
components within the architecture.

When using the AADL Error Model Annex for creating and analyzing RBDs, system designers
must assign reliability values as properties of components within an AADL architecture model
and embed descriptions of system failure characteristics within that model. Using the OSATE
tool, users can analyze the RBD representation to determine the system failure probability.

In conducting an FTA, users use the same AADL error model developed for the RBD. Within the
OSATE tool, the reliability representation of an AADL model is exported into an FTA tool (e.g.,
into OpenFTA [OpenFTA 2013]) for the analysis.

In conducting MAs, system designers assign failure probabilities or rates to transitions. For dis-
crete-time Markov chains (DTMCs), users assign failure probabilities as a fixed probability distri-
bution. For continuous-time Markov chains (CTMCs), users assign the failure rates as a Poisson

CMU/SEI-2014-TR-020 | 2

distribution. Within the OSATE tool, the AADL model is exported into a Markov chain represen-
tation compliant with the PRISM tool [Kwiatkowska 2011] for the analysis.>

1.3 System Safety Assessment

The SSA is a systematic investigation of a system, its architecture, and its implementation to show
compliance with the safety requirements. The methods employed may be qualitative or quantita-
tive and are the same as those used in the PSSA. SSAs generally include additional analyses such
as FMEA. However, rather than providing an evaluation of proposed architectures and derivation
of safety requirements, the SSA provides a verification that the design and implementation meet
the safety requirements defined in the FHA and PSSA.

For conducting an SSA, the Error Model Annex supports the methods outlined for the PSSA and
provides support for an FMEA. For the FMEA, users employ the Fault Impact Analysis capabili-
ties of the OSATE tool set to generate an FMEA report. A Fault Impact Analysis traces the error
paths between an error source and the components that it affects.

1.4 Reader’s Guide

Section 2 summarizes the AADL error model constructs that support ARP4761 processes and
methods. Section 3 presents the use of the OSATE tool set in conducting FHA, FTA, FMEA, MA,
and DD/RBD techniques. Section 4 presents the use of the Error Model Annex in the error model-
ing and analysis of the aircraft wheel brake system (WBS) example introduced in the ARP4761
and AIR6110 documents [SAE 1996, 2011]. An appendix lists the acronyms used in this report.

This report highlights the use of the AADL Error Model Annex for supporting the ARP4761 pro-
cess. Another report provides a detailed overview of the AADL Error Model Annex (Delange,
forthcoming). Both documents are complementary, and readers might consider reading them to-
gether. Also, when required, we reference this document so that users may find other useful in-
formation for modeling safety concerns of their architecture and study the advanced constructs of
the language.

z Note that there is also a commercial product called PRISM®, which is a System Reliability Center software tool

for comprehensive system reliability prediction (http://src.alionscience.com/prism), but it does not provide formal
analysis capabilities.

CMU/SEI-2014-TR-020 | 3

2 AADL Error Model Constructs That Support ARP4761

In this section, we present the AADL error model constructs that support various elements of the
ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process on Civil Air-
borne Systems and Equipment [SAE 1996]. Table 1 summarizes these constructs, listing AADL
error model constructs in the left column and ARP4761 elements in the top row. The subsequent
sections present the specification and use of each AADL error model construct.

Table 1:

ARP4761 Process Elements and Supporting AADL Error Model Constructs

AADL Error Model Constructs

ARP4761 Process Elements

IAssessment

Fault Tree Analysis

IAnalysis

Markov Analysis

(Reliability Block Diagram)

Error flows Error propagation

< Dependence Diagram

Error source

X< | % [Functional Hazard

Error path

Error sink

X [X | X |X [Failure Mode and Effect

Error behavior Error states

Error transitions

Error events

Composite error model

X | X [X | X [Xx
x
X | X [X [X

Properties

Hazards property

OccurrenceDistribution property

2.1 Error Propagation

2.1.1 Definition

Users can incrementally develop and analyze a model. For example, users can explore error
propagation through architecture without defining component details. Consider a basic dual-

redundant control system, as shown in Figure 2.

CMU/SEI-2014-TR-020 | 4

control1

actuator
e

4} dpin

Sensors

dpout 4

Figure 2: Basic Dual-Redundant Control System

A single set of sensors provides input to two instances of a controller. Each controller outputs an
actuator command to a fault manager that decides whether one or both controllers are faulty and
outputs a command to the actuator. Nominally, the fault manager outputs the command value
from only one controller. If that controller is deemed faulty, the fault manager uses the other value
unless the second (backup) controller is deemed faulty. If both controllers are deemed faulty, then
the fault manager outputs no value.

In modeling this system, users can first represent error propagations for the system. To do this,
users place Error Model Annex subclauses in each of the component declarations. Users can place
them in the type or implementation declarations. At this level, it can be useful to place them in the
type declarations, since they will be carried into any extensions of those declarations. Error
propagations are discussed in Architecture Fault Modeling with AADL and the Error Model An-
nex, Version 2 (Delange, forthcoming).

2.1.2 Procedure

For each artifact that may propagate an error, users declare error propagation in the error prop-
agations section. An error propagation can be incoming (the component receives an error) or
outgoing (the component transmits an error). An error propagation can be associated with com-
ponent features (e.g., component access, event/data ports) or bindings (e.g., bus, processor). If an
error propagation point both receives and sends errors, users include two error propagations:
one for the incoming errors and another for the outgoing errors. Users must associate one or more
error types with each propagation statement to specify what kind of error is propagated by this
error point.

2.1.3 Constraints

Each error-propagation declaration must specify types associated with it. Users do this using a set
of types, which may consist of only a single type.

2.1.4 Example

Listing 1 shows the specification of error propagation for the basic dual-redundant control sys-
tem (shown in Figure 2). For this example, both data ports are declared as propagation points, and
an error path is declared from the in data port to the out data port. Specifically, an error of any

CMU/SEI-2014-TR-020 | 5

type can propagate into the component through the data port dpin, and an error of any type can
propagate out of the data port dpout.

system control_sys
features

dpin: in data port;
dpout: out data port;

annex EMv2{**
error propagations
dpin: in propagation{AnyError};
dpout: out propagation{AnyError};
flows
fPath: error path dpin -> dpout ;
end propagations;

**};

end control_sys;

Listing 1: Error-Annex Subclause Within a Type Declaration

Similarly, users can declare error propagations for the other components, as shown in Listing 2.
The device sensor is an error source for any error type that propagates out of the data port dpout.
The device actuator is an error sink for any error type. The ft_manager, with ability to block
errors, is a sink for any error type.

device sensor
features
dpout: out data port;
annex EMv2{**
error propagations
dpout: out propagation{AnyError} ;
flows
fPath: error source dpout{AnyError};
end propagations;
35
end sensor;
device actuator
features
dpin: in data port;
annex EMv2{**
error propagations
dpin: in propagation{AnyError};
flows
fPath: error sink dpin{AnyError};
end propagations;
3
end actuator ;
system ft_manager_dual
features
dpinl: in data port;

CMU/SEI-2014-TR-020 | 6

dpin2: in data port;
dpout: out propagation{AnyError} ;
annex EMv2{**
error propagations
dpinl: in propagation{AnyError};
dpin2: in propagation{AnyError};
dpout: out propagation{AnyError};
flows
fP1: error sink dpinl{AnyError};
fP: error sink dpin2{AnyError};
end propagations;

¥

end ft_manager_dual;

Listing 2: Error Propagations for the Sensor, Actuator, and Fault Manager

With these error-propagation declarations incorporated into models, users can show the propaga-
tion of errors through the system. For example, consider an error in Controller 1. It will propagate
to the fault manager but will not propagate through to the actuator, as the fault manager is a sink
and is thus supposed to avoid the error propagation, as shown in Figure 3.

SENSOrs
—— |

dpout 4

actuator
actuator

dpin

Figure 3: Error Propagation from Controller 1

Users may use this analysis at the outset of an error assessment of a complex system with hun-
dreds of interacting components. In such a system, unlike the simple example shown here, it
might not be obvious where errors may propagate. Propagation analysis can be expanded to dis-
tinct error types where there may be differential error propagation through components of a sys-
tem. For example, an out-of-range value from one sensor in a set of redundant sensors may be
detected by a component sampling the sensor, allowing it to select another sensor. However, an
incorrect value that is within the acceptable range will continue to be propagated through the
component sampling the sensors, which results in a miscalculation later in the control process.
Also, users can model the transformation of error types. For example, a bad data value received
by a software component may result in that component aborting and not outputting a value. Using
the type system, users can model and analyze these complexities. This is discussed in more detail
in Architecture Fault Modeling (Delange, forthcoming).

CMU/SEI-2014-TR-020 | 7

2.2 Error Source

2.2.1 Definition

An error source declaration indicates that an error, which originates from within a component,
propagates out of that component. The error propagates out through one of the features or bind-
ings of the component. Error sources are discussed in Architecture Fault Modeling (Delange,
forthcoming).

2.2.2 Procedure

To declare an error source for a component, users

1.

declare an out propagation point in the error propagations section (as described in Section
2.1.2). In so doing, users establish the feature or binding through which the error propagates
out of the component. Optionally, users can also declare the type of error that is propagated.

declare the error source in the flows block of the error propagations section, thereby nam-
ing the flow, establishing the component as the source of the error flow, and associating the
error-propagation point with the flow. The error type associated with the error source must
comply with the declaration of the out propagation point and be a subtype of an error from
the associated error set.

2.2.3 Constraints

The declaration must be included in an EMV?2 error-annex subclause for the component.

One feature or binding can propagate different error types. ldentify these with separate dec-
larations in the error propagations section. The flows declarations block allows a user to
distinguish the error types that originated within the component itself from the one being re-
ceived and propagated. For example, a component can receive an OutOfBound error type on
an incoming error-propagation point and produce a ValueError on one of its outgoing error-
propagation points. For more information about error propagation, see Architecture Fault
Modeling (Delange, forthcoming).

2.2.4 Example

Listing 3 shows the definition of an error-propagation source and associated flow. The component
(battery) propagates the NoPower error type on its bus access feature socket.

CMU/SEI-2014-TR-020 | 8

device battery
features
socket : provides bus access common::power.generic;
annex EMv2{**
use types error_library;
use behavior error library::simple;
error propagations
socket : out propagation{NoPower};
flows
f1 : error source socket{NoPower};
end propagations;

**}5
end battery;

Listing 3: Declaration of Error Source on Component Features

Listing 4 shows the error-annex declarations for declaring error propagations through bindings. It
describes a virtual processor that propagates the SoftwareFailure error type to all components that
are bound to the virtual processor.

virtual processor partition
annex EMv2{**
use types error_library;
use behavior error_library::simple;

error propagations
bindings : out propagation{SoftwareFailure};
flows
fsoft : error source bindings{SoftwareFailure};
end propagations;
3

end partition;

Listing 4: Error Model Annex Subclause on Component Bindings

2.3 Error Path
2.3.1 Definition

An error path describes how an error, which originates outside of a component, passes through
that component. It specifies that an error propagates into the component through one feature or
binding, continues through the component, and exits through an outgoing feature or binding of the
component. The component behavior may transform the error (i.e., change its type) as it passes
through the component. For example, an incoming late-delivery error may be transformed as an
outgoing-service error. Error path description is also described in Architecture Fault Modeling
(Delange, forthcoming).

CMU/SEI-2014-TR-020 | 9

2.3.2 Procedure

Declaring an error path requires the user to

1. declare an in propagation for the feature or binding that receives the incoming error (as de-
scribed in Section 2.1.2). Users specify this within the error propagations section of the
component.

2. declare the out propagation for the feature or binding that transmits the error out of the
component. Users specify this within the error propagations section of the component.

3. declare the error path in the flows section and specify the appropriate error type. In particu-
lar, if the error is transformed, users specify different error types for the incoming and out-
going features.

2.3.3 Constraints
The declaration must be included in an EMV?2 error-annex subclause for the component.

2.3.4 Examples

2.3.4.1 Error Path Through Connections

The example in Listing 5 shows the declaration for an error path through a control system com-
ponent, where the component receives the bad data value Bad_Data. In response to the error, the
control_sys component does not send a command to the actuator. In the model, the output error
type is No_Flow_Cmd, which is an extension of the ServiceOmission error type. The extension,
which is a renaming, is declared in the package ErrorModelLibrary.

system control_sys
features

dpin: in data port;
dpout: out data port;

annex EMv2{**
use types ErrorModellLibrary;
error propagations
dpin: in propagation{Bad_Data};
dpout: out propagation{No_Flow_Cmd};
flows
fPath: error path dpin -> dpout ;

end propagations;**};end control_sys;

Listing 5: Basic Control System Component

CMU/SEI-2014-TR-020 | 10

SEensors control actuator

dpin
dpout P e dpin
dpout

Figure 4: Graphical Representation of the Control System with Error Flows

2.3.4.2 Error Path Through Bindings

The following example shows an error path for a component binding. The component partition
defines an in propagation for the type HardwareFailure for each processor bound to it. It also
defines an out propagation for all components bound to it (for example, a process bound to this
partition component). Finally, it declares an error path that specifies that any HardwareFailure

received from the bound processor is propagated to the bindings. On the other hand, the same
component is an error source for the SoftwareFailure type. Figure 5 illustrates the error flow of

this declaration.
Virtual processor
Processor _ Process

Figure 5: Error Flow of the HardwareFailure to SoftwareFailure Using Bindings

virtual processor partition
annex EMv2{**
use types error_library;
use behavior error_library::simple;

error propagations
bindings : out propagation{SoftwareFailure, HardwareFailure};
processor : in propagation{HardwareFailure};
flows
fsoft : error source bindings{SoftwareFailure};
fhard : error path processor{HardwareFailure} -> bindings;
end propagations;

**};

end partition;

Listing 6: Declaration of Error Flows Using Bindings

CMU/SEI-2014-TR-020 | 11

2.4 Error Sink
2.4.1 Definition

In an error sink, an error that enters a component is handled inside the component, either by the
component itself or one of its subcomponents. An error sink represents the end of an error flow
that originates from an error source. Error sinks are detailed in Architecture Fault Modeling
(Delange, forthcoming).

2.4.2 Procedure

Declaring an error sink requires the user to

1. declare an in propagation for the feature or binding that receives the incoming error (as de-
scribed in Section 2.1.2). In so doing, users establish the feature or binding through which
the error propagates into the component. Optionally, users can also declare one or more
types of errors that are propagated.

2. declare an error sink in the flows section. Optionally, users can also declare one or more
types of errors that are propagated. The associated error set of the error sink is a subset of
(or the same as) the incoming propagation types.

2.4.3 Example

The following example shows an incoming error propagation with a type NoService for the bus
access feature input. This incoming error propagation is used in the declaration of the error
sink nsl. Additionally, notice that the in propagation input triggers a state change in the error
behavior, as specified in the transitions section of the component error behavior section.

system wheel_one_input extends wheel
features

input : requires bus access common::pressure.i;
annex EMv2{**

use types error_library;

use behavior error_library::simple;

error propagations

input : in propagation{NoService};
flows

nsl : error sink input{NoService};
end propagations;

component error behavior
transitions
t1 : Operational -[input{NoService}]-> Failed;
end component;
**};

end wheel_one_input;

Listing 7: Declaration of Error Sinks Using Bindings

CMU/SEI-2014-TR-020 | 12

2.5 Error Events
2.5.1 Definition

An error event represents an internal event of the component, specific to error modeling. For
example, for a battery, an error event could represent the fact that the battery is depleted or that
an internal component fails. Error events are also detailed in Architecture Fault Modeling
(Delange, forthcoming).

2.5.2 Procedure

Declaring an error event requires the user to
o declare the event in the component error behavior section within the annex EMV2 section
of a component declaration

o declare the event in the error behavior section of an error library and reference that behav-
ior in the use behavior section

2.5.3 Constraints

After declaring the error event, users can associate the event with a condition that triggers state
transitions or error propagations.

2.5.4 Example

The following example shows the definition of two error events, Depleted and Explode, for a
component named battery. These are declared within the component error behavior section.
Also, all of the events declared in the error behavior simple, defined in the error library package
error_library, are events associated with the battery component. By using the library in the bat-
tery component, as shown in Listing 8, the events op and failure are also events for the battery
component. Listing 9 shows an excerpt from the library error_library.

device battery
features

socket : provides bus access common::power.generic;
annex EMv2{**

use types error_library;

use behavior error_library::simple;

error propagations
socket : out propagation{NoPower};
flows
f1 : error source socket{NoPower};
end propagations;
component error behavior
events
Depleted : error event;
Explode : error event;
end component;
end battery;

Listing 8: Use of an Error Library Within a Component Declaration

CMU/SEI-2014-TR-020 | 13

package error_library
public
annex EMv2{**
error behavior simple
events
op : error event;
failure : error event;
states
Operational : initial state;
Failed : state;
transitions
t1 : Operational -[failure]-> Failed;
t2 : Failed -[op]-> Operational;
end behavior;
35

end error_library;

Listing 9: Definition of an Error Library

2.6 Error States
2.6.1 Definition

Error state declarations define the specific error states of state-machine error-behavior models.
Error states are generic and are declared within an error-annex library package as part of an er-
ror-behavior declaration. These error behaviors are imported by a component. Error states and
state machines are also discussed in Architecture Fault Modeling (Delange, forthcoming).

2.6.2 Procedure

Declaring an error state requires the user to
« declare the state in the error behavior section of an error library, and reference that behavior
in the use behavior section

« import the state-machine behavior with a use behavior within the annex EMV2 section of a
component declaration

2.6.3 Constraints
Users must declare one state as the initial state for each state machine.
2.6.4 Example

In the following example, we show the definition of a generic error behavior in a package. In this
example, two states, Operational and Failed, are defined within the state machine Simple. The
initial state is the Operational state.

package error_library
public
annex EMv2{**
error types
ValueError . type;
OutOfRange : type extends ValueError;

CMU/SEI-2014-TR-020 | 14

Inconsistent : type extends ValueError;

end types;

error behavior Simple

states
Operational : initial state;
Failed . state;

end behavior;

)5
end error_library;

Listing 10: Declaration of Error States Within an Error Library

This generic error behavior Simple can be imported into a component with the use behavior dec-
laration. Thus, the virtual processor component partition has two states: Operational, which is the
initial state, and Failed.

virtual processor partition
annex EMv2{**

use types error_library;

use behavior error_library::simple;
**}5

end partition;

Listing 11: Use of an Error Behavior

2.7 Error Transitions
2.7.1 Definition

Error transitions are part of a component’s state-machine error-behavior model. They define the
ways that the state machine moves from one state to another. They encompass a definition of the
starting state, conditions for the transitions, and the terminating state of the transition. Error
transitions are used in defining the generic error state machines within an error-annex library
package and can be declared as part of a component’s error-behavior declaration. Error transi-
tions are discussed in Architecture Fault Modeling (Delange, forthcoming).

2.7.2 Procedure

Declaring a transition requires

1. aname for the transition (optional)

2. asource state for the transition

3. acondition that references an incoming error propagation or an error event

4. adestination state, defined in the imported behavior or the specific component error behavior

2.7.3 Constraints

Users can declare transitions within a component declaration only if the component is associated
with an error behavior. The transitions declared within the component are specific to the compo-
nent and are combined with those imported with the behavior.

CMU/SEI-2014-TR-020 | 15

Two transitions cannot have the same source state and condition: this would lead to nondetermin-
istic behavior. However, several error transitions can have the same error-state source, as long
as they have different conditions.

In the Error Model Annex semantics, the error transitions are executed after the propagations
section. The rationale is that the propagations section depends on the current state of the compo-
nent, so states are updated before propagating any error. Note also that only an error sink may
trigger a switch from one state to another through an error-behavior transition (as defined in Sec-
tion 2.7).

2.7.4 Example

The following example defines two error transitions for switching from the Operational state to
the Failed state. One is triggered when the event Depleted occurs and another when the Explode
event occurs.

device battery
features

socket : provides bus access common::power.generic;
annex EMv2{**

use types error_library;

use behavior error_library::simple;

component error behavior

events
Depleted : error event;
Explode : error event;
transitions

Operational -[Depleted]-> Failed;
Operational -[Explode]-> Failed;
propagations
pl: Failed -[]-> socket(NoPower);
normal : Operational -[]-> socket(NoError);
end component;
**}5

end battery;

Listing 12: Use of Error Transitions and Propagations

2.8 Error Propagation Condition
2.8.1 Definition

An error propagation condition is part of a component-specific error-behavior specification. It
defines the conditions under which a component emits an error. Error propagation conditions
are also discussed in Architecture Fault Modeling (Delange, forthcoming).

2.8.2 Procedure

Defining an error propagation condition requires
1. aname (optional)

2. astate in which the component propagates the error

CMU/SEI-2014-TR-020 | 16

3. acondition that triggers the error emission (A condition references [an incoming]error prop-

agation or error event.)

4. anouterror propagation point that defines which part of the component (feature or bind-
ing) emits the propagation

2.8.3 Constraints

As part of the Error Model Annex semantics, the error propagations are executed before the
transitions section. Also, the incoming error propagation referenced within a propagation
condition should be specified as an error path in the error flows of the component.

2.8.4 Example

The following example defines the propagation for the component battery. When the component
is in the Operational mode, it does not propagate any error (NoError) on its bus access. In the
Failed mode, it sends the NoPower error type in this feature. No conditions are specified for ei-
ther propagation.

Comment [PR1]: Should it be “an in error
propagation or error event”? Compare it to “out
error-propagation” in step 4.

tmk: ok as is?

device battery
features

socket : provides bus access common::power.generic;
annex EMv2{**

use types error_library;

use behavior error_library::simple;

component error behavior

events
Depleted : error event;
Explode : error event;
transitions

Operational -[Depleted]-> Failed;
Operational -[Explode]-> Failed;
propagations
pl: Failed -[]-> socket(NoPower);
normal : Operational -[]-> socket(NoError);
end component;
)5

end battery;

Listing 13: Declaration of Error-Propagation Condition

2.9 Composite Error Behavior Model

2.9.1 Definition

The composite error behavior model expresses the error behavior of a component in terms of the
Error states of its subcomponents. Composite error behavior model is also discussed in Architec-
ture Fault Modeling (Delange, forthcoming).

2.9.2 Procedure

Defining a composite error-behavior model requires
1. anerror behavior for the root component and its subcomponents

CMU/SEI-2014-TR-020 | 17

2. acomposite error behavior section that defines all the Composite states (A Composite state
defines the component state according to the state of its subcomponents.)

2.9.3 Constraints

Users can define a composite error behavior only for a component implementation. The reason is
that only the component implementation contains subcomponents. As the composite error behav-
ior makes use of them, it makes sense to use them only with a component implementation.

2.9.4 Example

In the following example, we define a temp_regulator system that is composed of two sub-
systems: one thermostat t1 and one thermostat t2. The main component (temp_regulator) is con-
sidered as failing if one of its subcomponents is failing also. Otherwise, as long as one thermostat
is operating, we consider the main system operational.

To capture that, the main component (temp_regulator) defines a composite error behavior state
machine that defines the condition for being in the Operational or Failed state:

« The component is in the Operational state if one subcomponent is in the Operational state.
o The component is in the Failed state if both subcomponents are in the Failed state.

The following model shows how to use the Error Model Annex syntax to declare this system.

package composite_section
public
with EMV2;

device thermostat
annex EMv2{**
use behavior ErrorModellLibrary::Simple;
**}5
end thermostat;

system temp_regulator
end temp_regulator;

system implementation temp_regulator.i
subcomponents
t1l: device thermostat;
t2: device thermostat;
annex EMv2{**
use behavior ErrorModellLibrary::Simple;
composite error behavior
states
[t1.0perational or t2.0Operational]-> Operational;
[tl.Failed and t2.Failed]-> Failed;
end composite;
**};
end temp_regulator.i;

end composite_section;

Listing 14: Definition of a Composite Error Model

CMU/SEI-2014-TR-020 | 18

2.10 Hazards Property

2.10.1 Definition

The Hazards property is used mostly to generate safety-related documentation (such as the FHA).
It can be attached to error states, error events, or error propagations. The property is list of
record values that have several fields:

Cross-reference: string value for a cross-reference into an external document

Phases: list of string values to identify the operational phases (modes) in which the hazard is
relevant. Because this is a list, it can reference several phases for the same hazard (for exam-
ple, in the context of avionics systems, takeoff and landing).

Environment: string value to describe the operational environment in which the hazard is
relevant

Likelihood: label (A, B, C, D, E) that specifies how likely an error event will occur. Stand-
ards-specific constants map standards likelihood descriptions to appropriate (probabilities)
values.

Severity: integer that specifies the severity of a hazard. The value ranges from 1 (very criti-
cal) to 5 (low critical). Standards-specific constants map standards severity descriptions to
appropriate number values.

Description: string value providing a textual description of the hazard

Verification method: string value to textually describe the verification method used to ad-
dress the hazard

Risk: string value to textually describe the potential risk of the hazard
Comment: string value to textually describe additional comments about the hazard

The Severity field is an integer value to indicate the severity level of the hazard, ranging from 1
(high) to 5 (low). MIL-STD-882D suggests descriptive labels (Catastrophic, Critical, Marginal,
and Negligible). The ARP4761 defines descriptive labels (Catastrophic, Hazardous, Major, Mi-
nor, and NoEffect). For adapting the EMV2 annex to each safety standard, we introduce standard-
specific notations. The severity values specific to MIL-STD-882D are shown in Listing 15.

property set MILSTD882 is

Catastrophic : constant aadlinteger => 1;
Critical : constant aadlinteger => 2;
Marginal : constant aadlinteger => 3;
Negligible : constant aadlinteger => 4;

end MILSTD882;

Listing 15: Definition of the MIL-STD-882D-Specific Severity Properties

The severity values for ARP4761 are shown in Listing 16.

CMU/SEI-2014-TR-020 | 19

property set ARP4761 is

Catastrophic : constant aadlinteger => 1;
Hazardous : constant aadlinteger => 2;
Major : constant aadlinteger => 3;
Minor : constant aadlinteger => 4;
NoEffect : constant aadlinteger => 5;

end ARP4761;

Listing 16: Definition of the ARP4761-Specific Severity Properties

As with the Severity field, the Likelihood field is the likelihood with which the hazard occurs.
Likelihood is expressed with a label in terms of levels ranging from A (high) to E (low). Each
level typically has an associated probability of occurrence (p) threshold. The Likelihood property
is defined under the EMV2 namespace. Then, the annex includes standards-specific values for
mapping standards values to the annex. The MIL-STD-882D standard suggests likelihood levels
for probability of occurrence over the life of an item:

« Frequent:p>10"

« Probable: 10 >p>107?

« Occasional: 10 °>p>10"°
. Remote:10°>p>107"°

« Improbable: p <107

To have consistent wording between the standard and the model, use the values in Listing 17 for
the MIL-STD-882D Likelihood property.

property set MILSTD882 is
Frequent : constant EMV2::LikelihoodlLabels => A;
Probable : constant EMV2::LikelihoodLabels => B;
Occasional : constant EMV2::LikelihoodlLabels => C;
Remote : constant EMV2::LikelihoodLabels => D;
Improbable : constant EMV2::LikelihoodLabels => E;
end MILSTD882;

Listing 17: Definition of the MIL-STD-882D-Specific Likelihood Values

The ARP4761 and DO178 standards define descriptive labels for probability of occurrence per
operational hour:
« Probable:p>107°

« Remote:10°>p>10"
. ExtremelyRemote: 10" <p < 10~°
« Extremelylmprobable: p < 10°°

To reflect this wording, the Likelihood values for ARP4761 appear in Listing 18.

CMU/SEI-2014-TR-020 | 20

property set ARP4761 is

Probable : constant EMV2::LikelihoodLabels => A;
Remote : constant EMV2::LikelihoodlLabels => B;
ExtremelyRemote : constant EMV2::LikelihoodLabels => C;
ExtremelyImprobable : constant EMV2::LikelihoodLabels => D;

end ARP4761;

Listing 18: Definition of the ARP4761-Specific Likelihood Values

The Hazards property is used especially to generate the Functional Hazard Assessment (FHA)
required by certification standards (such as ARP4761). When the tools analyze the component,
the property is read to generate the spreadsheet that contains all faults and their associated infor-
mation. As a consequence, this property can be used for all Error Model Annex artifacts reported
in the FHA. Error-model-specific properties and the Hazards property are discussed in Architec-
ture Fault Modeling (Delange, forthcoming).

Also, because users can attach several hazards to the same error-model-related artifact, the proper-
ty is defined as a list so that users can specify several hazards for the same error-related artifact.

2.10.2 Procedure

To declare the property, users associate it with its related error-model artifact within the Error
Model Annex declaration. Specifically, users employ the applies to keyword to reference the er-
ror-model element associated with the property value. When referencing an error type of the ele-
ment, users distinguish the error type with a dot (.).

2.10.3 Constraints
There is no specific constraint for the Hazards property.
2.10.4 Example

The following example defines the property on two events. That will then add these events into
the FHA and fill the report with this information.

device battery
features

socket : provides bus access common::power.generic;
annex EMv2{**

use types error_library;

use behavior error_library::simple;

error propagations

socket : out propagation{NoPower};
flows

f1 : error source socket{NoPower};
end propagations;

component error behavior

events
Depleted : error event;
Explode : error event;

end component;

CMU/SEI-2014-TR-020 | 21

properties

EMV2::hazards =>

([crossreference => "ARP4761 page 277 figure 9";

failure => "Loss of one power source,

might be critical if both are lost (primary and redun-
dant)";

phases => ("Landing","RTO");

description => "Loss of Electrical Power to BSCU";

comment => "Major hazard if both power are lost";])

applies to socket.NoPower;

EMV2::hazards =>
([crossreference => "TBD";
failure => "Battery Explode";
phases => ("all");
description => "Battery Explode, major hazard";
comment => "Have a physical impact on the surrounding compo-
nents";])
applies to Explode;

EMV2::hazards =>
([crossreference => "TBD";
failure => "Battery Depleted";
phases => ("all");
description => "No more power in the battery";
comment => "Can be an issue if redundant battery is failing al-
so"; 1)
applies to Depleted;
Y5

end battery;

Listing 19: Use of the Hazards Property

2.11 OccurrenceDistribution Property
2.11.1 Definition

The OccurrenceDistribution property specifies the probability of an error event or an error propa-
gation. It can be associated with error propagations, error states, and error events. When asso-
ciated with an error event or outgoing error propagation, it represents the probability that the
error propagation or the event will occur. When associated with a state, it represents the proba-
bility of being in that state. When associated with an incoming error propagation, it represents
the probability of receiving the error. Error-model-specific properties and the OccurrenceDistri-
bution property are discussed in Architecture Fault Modeling (Delange, forthcoming).

The OccurrenceDistribution property is a record that defines

« adistribution function. Several rules have been specified by the standard (such as fixed,
Poisson, or stochastic; a complete list is included in the standard).

o avalue that represents the likelihood or rate of occurrence according to the specified distri-
bution function

CMU/SEI-2014-TR-020 | 22

2.11.2 Procedure

To declare the property, users associate it with its related error-model artifact within the Error
Model Annex declaration. Specifically, users employ the applies to keyword to reference the er-
ror-model element associated with the property value. When referencing an error type of the ele-
ment, users distinguish the error type with a dot (.).

2.11.3 Constraints
There is no specific constraint for the OccurrenceDistribution property.
2.11.4 Example

In the following example, we define the property for the occurrence of the NoPower error type on
the socket bus access of the component battery.

device battery
features

socket : provides bus access common::power.generic;
annex EMv2{**

use types error_library;

use behavior error_library::simple;

error propagations
socket : out propagation{NoPower};
flows
f1 : error source socket{NoPower};
end propagations;
properties
EMV2::0ccurrenceDistribution =>
[ProbabilityValue => 1.35e-5;
Distribution => Fixed;]
applies to socket.NoPower;
35
end battery;

Listing 20: Use of the OccurrenceDistribution Property

CMU/SEI-2014-TR-020 | 23

3 OSATE Tool Set

The OSATE tool set provides several functions for automating the production of safety-related
documentation. In particular, for the ARP4761 standard, it can generate the following:

o Functional Hazard Assessment (FHA)

o Fault Tree Analysis (FTA)

o Failure Modes and Effects Analysis (FMEA)

e Markov Analysis (MA)

« Dependence Diagram (DD), referenced here as a Reliability Block Diagram (RBD)

It also provides several functions to analyze the consistency between the error-model artifacts and
the core AADL model. The functions are available in the Analysis menu of OSATE, under the
submenu Fault Analyses, as shown in Figure 6.

Analyses Sample Reflective Editor Run Window Help
Import/Export Madels

Architecture

:aﬂﬂuuwwww

Semantic Checks »
ARINC653 > f— =
Fault Analyses > B3 consistencyChecks

F] Check Flow Latency UnhandledFaults
Scheduling > Faultimpact
Security

4 A" PRISM export preferences
Lute

o
o A" PRISM

=i, Fault Tree Analysis
=, Reliability Block Diagram
=i, FHA

Figure 6: OSATE Functions for Consistency Analysis

The OSATE analysis plug-ins are early prototypes for the purposes of demonstration only. As
prototypes, they require additional evaluation and testing, especially concerning their application
to large, complex systems. We list known limitations and constraints at the end of each section
describing the plug-ins. Additional development and testing are under way.

3.1 Functional Hazard Assessment Support

The FHA, not to be confused with Fault Hazard Analysis (see the FAA System Safety Handbook
[FAA 2000]), is defined as part of SAE ARP4761. It is a systematic examination of systems and
subsystem functions to identify and classify failure conditions of those functions according to
their severity.

We support this process by working with specifications of the system or subsystems of interest
expressed as component type descriptions for all component categories in AADL, ranging from

CMU/SEI-2014-TR-020 | 24

system and process to processor and device. We will then attach information relevant to an FHA
through EMV?2 subclauses and property associations.

We use the EMV2 subclause to declare for each component the relevant outgoing error propaga-
tions and identify those outgoing error propagations that are error sources. In the error source
declaration, we may identify the error source as an error state or as an error-type set (set of
type tokens). Those are the entities that represent potential hazards to other components or the
environment.

EMV2 includes a set of properties that are defined in the property set EMV2. We use the Hazards
property to characterize the fault. Section 2.10 explains how to use them in the model.

These properties allow modelers to provide descriptive hazard information within the model. The
property values are associated with error propagations and events of components. They are de-
clared in the properties section of EMV2 subclauses. They can be declared for component types
or implementations; in this case, they apply to all instances of components of this type. Or they
can be declared for specific subcomponents; for example, the hazard description can be specific to
the context of the subcomponent (component instance).

The path in the applies to clause of the property association identifies the specific target of the
hazard description. The path is a (.)-separated list of identifiers. The path may start with zero or
more subcomponent identifiers, starting with a subcomponent in the component whose error-
annex subclause contains the property association. The path is followed by an error-propagation
identifier or error-source identifier and optionally an error-type identifier. The error propagation
or error source must be of the last subcomponent in the path or the component classifier (type or
implementation) that contains the error-annex subclause.

3.1.1 Processed Modeling Patterns

In order to generate the FHA from the AADL model, the following information must be defined

(as shown in Table 1):

« points of failure: outgoing error propagations (as defined in Section 2.1) or error events
(as defined in Section 2.5)

« Hazards properties associated with each point of failure (as explained in Section 2.10)
3.1.2 Example Model

The model shown in Listing 21 illustrates an example hazard specification. The Hazard property
is associated with the error-behavior state that is the error source. Such hazard specifications are
characterized by severity and criticality. Our GitHub public example repository provides addi-
tional models [GitHub 2013].

CMU/SEI-2014-TR-020 | 25

device PositionSensor
features
PositionReading: out data port ;
flows
fl: flow source PositionReading{
Latency => 2 ms .. 3 ms;
¥
annex EMv2{**
use types ErrorLibrary;
use behavior ErrorModellLibrary::Simple;
error propagations
PositionReading: out propagation {ServiceOmis-
sion,ValueError,ItemOmission};
flows
efl:error source PositionReading{ServiceOmission} when Failed;
ef2:error source PositionReading{ValueError} when Failed;
ef3:error source PositionReading{ItemOmission} when Failed;
end propagations;
properties
EMV2::severity => 1 applies to efl.Failed;
EMV2::1ikelihood => 3 applies to efl.Failed;
EMV2::hazards =>
([crossreference => "1.1.1";
failure => "Loss of sensor readings";
phases => ("all");
description => "No position readings due to sensor failure";
comment => "Becomes major hazard, if no redundant sensor”;
D
applies to efl.Failed;
=}

end PositionSensor;

Listing 21: Definition of the Hazard, Likelihood, and Severity Properties

3.1.3 Fault and Hazard Analysis Report Example

From the previous component definition, OSATE can automatically produce the FHA report, as
shown in Figure 7. The FHA report includes catastrophic and critical hazards. The other hazards
remain in the model for safety analysis activities in later phases.

A B = D E F G
1 Component Error Crossreference Functional Failure Operational Phases Severity Likelihood
2 PositionSensor "Failed on efl" "1.1.1" "Loss of sensor readings” "all" Hazardous Remote
3 |Actuatorl "Failed" "1.1.3" "Loss of actustor action” "all" Notffect ExtremelyRemote
4 | Actuator2 "ServiceOmission on aperation” "LL3" "Loss of actuator action” "all" NoEffect ExtremelyRemote

Figure 7: OSATE's Functional Hazard Assessment Report

In producing the report, OSATE processes each component instance in a system instance model
that has an EMV?2 subclause with an error propagations section. Then, the tool processes every
error source from the flows declarations, either incoming propagations or error events.

CMU/SEI-2014-TR-020 | 26

3.2 Fault Tree Analysis Support
3.2.1 Introduction

FTA is a graphical representation of the faults that contribute to generate a failure. Several safety
and reliability evaluation processes, such as ARP4761, use this type of analysis. The following
paragraphs explain the mapping rules between an AADL model and its Error Model Annex into a
fault tree representation.

3.2.2 Using the Fault Tree Analysis Generator

To use the FTA generator, users select a system instance and invoke the FTA tool on the root sys-
tem. A dialog box will ask for the error state (in terms of component behavior state) that corre-
sponds to the error, as shown in Figure 8.

r ~
% Error State name &J

Please specify the name of the error state name

failed

QK] ’ Cancel

h

Figure 8: Error State for the Fault Tree Analysis

OSATE then produces the file in the reports subdirectory, as shown in Figure 9.

4 [£3 instances
4 |y reports
4 [73 FaultTreefnalysis
¥; fha-fta_AircraftFM5_i_Instance FaultTreeAnalysis.xml
[& fha-rbd_AircraftFMS_i_Instance_ FaultTresAnalysisaml
@ fha-fta_AircraftFM5_i_Instance.aaxl?
E-_} fha-rbd_AircraftFM5_i_Instance.aaxl2

Figure 9: OSATE's Reports Subdirectory

The tool generates two types of files:

1. OpenFTA format, suitable for use directly in OpenFTA [OpenFTA 2013], with the file ex-
tension .fat

2. ageneric Extensible Markup Language (XML) format that can be exported to other com-
mercial tools, with the file extension .xml

3.2.3 Mapping to OpenFTA Format File

The mapping to OpenFTA provides the ability to use the FTA capability of an open-source tool.
Even if this tool has some limitation, it is a convenient way to visualize the fault tree of the sys-
tem. Once the report is generated, users can use it directly within OpenFTA. Figure 10 shows one
example of an exported model.

CMU/SEI-2014-TR-020 | 27

eventl2

component mon in
state Failed

event2?

eventlS eventZi

0.l

eventle eventld
0.1

Report from a
Maonitor that
causes an
invalid switch
o the
altern...

Error from
compenent
cmd on skid
with types
{Movalue}

Errar from
component
cmd on brake
with types
{HoWalue}

eventlt eventls

eventlS

eventld

eventla
0.1

Error from
compenent
partitian2
with types
SoftmareFailure

Error from
campenent
partition2
with types
ardwareFailure,

Processor
error with

Processor
error with

types types
{HardwareFailure SoftrareFailure}

Figure 10: Fault Tree Analysis as Shown in OpenFTA

3.2.4 Mapping to Generic XML Format

Most FTA tools are proprietary and use a specific format. Thus, exporting the AADL notation
into a tool requires producing a file using a specific format. One solution is to use a general-
purpose, open fi